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Preface

The 8th International Conference on Weigh-In-Motion (ICWIM8) comes back to Europe, after two 
editions in North and Latin America. It is the first ICWIM organized in Central (former Eastern) Europe. 
The local organization is subcontracted to the Czech Transport Research Centre (Centrum Dopravniho 
Vyzkumu, CDV). IFSTTAR (French Institute of Science and Technology of Transport, Planning and 
Networks) brought a strong support to the International Society for Weigh-In-Motion (ISWIM) 
organizing a successful conference and leading the International Scientific Committee (ISC). Three 
International organizations are also partners of this conference: the International Transport Forum of the 
OECD (ITF), the World Road Association (PIARC) and the Forum of European Highway Research 
Laboratories (FEHRL).

ICWIM has a rich history, with a series of 8 conferences held in 4 continents: Zürich (1995), Lisbon
(1998), Orlando (2002), Taipei (2005), Paris (2008), Dallas (2012), Foz do Iguaçu (2016) and now
Prague (2019). Two of these conferences (2002 and 2012) were combined with NATMEC (North 
American Travel Monitoring Exhibition and Conference), and one (2008) with HVTT (Heavy Vehicle 
Transport Technology) conferences. ICWIM7 (2016) was combined with a PIARC International 
seminar.

ICWIM8 is held as a series of 8 dedicated sessions with fully peer reviewed papers published in these 
proceedings, and two panel discussions. ICWIM8 also includes for the first time an end-user series of 
sessions specifically designed for practitioners to be exposed to the benefits, uses and value that mass 
data brings. 

The conference addresses the broad range of topics related to on-road and in-vehicle WIM technology, 
its research, installation and operation and use of mass data across variable end-uses. Innovative 
technologies and experiences of WIM system implementation are presented. Application of WIM data 
to infrastructure, mainly bridges and pavements, is among the main topics. However, the most 
demanding application is now WIM for enforcement, and the greatest challenge is WIM for direct 
enforcement. Most of the countries and road authorities should ensure a full compliance of heavy vehicle 
weights and dimensions with the current regulations. Another challenging objective is to extend the 
lifetimes of existing road assets, despite of increasing heavy vehicle loads and flow, and without 
compromising with the structural safety. Fair competition and road charging also require accurately 
monitoring commercial vehicle weights by WIM.

WIM contributes to a global ITS (Intelligent Transport System) providing useful data on heavy good 
vehicles to implement Performance Based Standards (PBS) and Intelligent Access Programme (IAP, 
Australia) or Smart Infrastructure Access Programme (SIAP).

The conference reports the latest research and developments since the last conference in 2016, from all 
around the World. More than 150 delegates from 33 countries and all continents are attending ICWIM8,
mixing academics, end users, decision makers and WIM vendors. An industrial exhibition is organized 
jointly with the conference. 

We greatly appreciate the support of the major sponsors of the conference: Camea, Cross, Intercomp, 
International Road Dynamics (IRD), Kistler AG, Q-Free and Vanjee.

Bernard  Jacob
Vice-president Science 
of ISWIM
International Scientific 
Committee Chair
IFSTTAR, France

Franziska Schmidt 
International Scientific 
Committee Vice-chair
IFSTTAR, France



International Society for Weigh-in-Motion (ISWIM)

The International Society for Weigh-In-Motion (ISWIM), an international not-for-profit organization 
based in Switzerland, was born in 2007 and officially launched in 2008, to welcome all with a common 
interest in WIM – both on-road and in-vehicle. It supports advances in WIM technologies and promotes 
more widespread use of WIM and its widespread applications including the use and benefits of mass 
information. 

ISWIM brings together three distinctive groups: 
users
researchers, and
vendors of systems for weighing of vehicles in motion.

Organizing WIM conferences and seminars is one major objective. ISWIM has successfully held seven
International Conferences on Weigh-in-Motion (namely ICWIM 1 to 7) including Zurich, Lisbon, 
Orlando, Taipei, Paris, Dallas and Foz-do-Iguazu. In addition, International Seminars have been 
organized, such as in Florianopolis (Santa Catarina, Brazil) in 2011.  Furthermore, ISWIM actively 
participates in sister organization events including (for 2018 only): 

Intertraffic (20-23 March 2018), Amsterdam, Holland. The workshop on the uses of WIM for
Enforcement was held
NATMEC, a short presentation on ISWIM at the plenary opening session and a 1-hour ISWIM
session
SATC, Southern African Transport Conference and Exhibition (9-12 July 2018), a full day
ISWIM workshop was held
HVTT (2 – 5 October 2018), Rotterdam, Holland. The seminar included a 50-minute ISWIM
side event

As part of the outreach program, ISWIM publishes on a quarterly basis the ISWIM Newsletter.  The 
newsletter covers stories from the WIM world including articles from users, academics and vendors.   

ISWIM is also active on the Internet through its web site http://www.is-wim.org and is actively involved 
though its LinkedIn account. The social media offers an International portal for all things WIM, with 
many resources, such as scientific and technical publications, links to WIM web sites, and facilitates 
exchanges of WIM experiences. The website hosts the pages of the affiliated vendors forming the 
Vendor College.

ISWIM has a scientific interest in supporting WIM standardization initiatives such as the recently 
European standard submitted to the vote of the EU members states by the CEN (European Committee 
for Standardization). ISWIM is promoting common tests and assessment of WIM systems and WIM 
applications in exposing end-users to the myriad of uses.

ISWIM consists of individual and corporate members. There is no membership fee for individuals. There 
is a membership fee for companies and organizations. 

ISWIM has widespread individual membership from 73 countries. 



The Vendors College consists of 19 members from 13 different countries who all are actively involved 
in the manufacture and supply of WIM equipment globally. The Vendors College has grown over the 
years, and still continues to do so, since ISWIM was first formed and is proud to have an active and 
leading role within the society. The members of the college meet from time to time between the 
international ICWIM conferences, usually at trade fairs, where members are likely to be attending to 
discuss pertinent matters relevant to their interests. In addition, the members of the college vote for a 
presence on the ISWIM board, where they are represented by two of their elected members.”. There is 
a Board of up to 15 members which is elected by the General Assembly of all members.

You are invited to join ISWIM and become an active member of the ISWIM community by signing up 
on the ISWIM web site: http://www.is-wim.org.

Chris 
Koniditsiotis

President
Australia

Bernard Jacob
Vice-President 

Science
IFSTTAR

France

Andrew Lees
Vice-President 

End-users
Q-Free
United 

Kingdom 

Lily Poulikakos
Treasurer  

EMPA
Switzerland

Deborah 
Walker 
General 

Secretary
FHWA

United States

Aleš Žnidari
Information 

Officer
ZAG
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APPLICATION OF DEEP LEARNING TECHNIQUE IN HIGH SPEED WEIGH-IN-
MOTION SYSTEMS FOR DIRECT ENFORCEMENT
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Abstract
Direct Enforcement Weigh-in-motion (WIM) systems are inevitable parts for Intelligent 
Transportation Systems. Hence, it is essential to have reliable WIM instruments that fulfill 
standard specifications during operation time. To that effect, two weighing platforms were
used in each lane, (3.5~4.5 x 0.98) m.

For a period of more than one year, more than 50,000 trucks from various classifications, in 
different weigh-station locations, had passed our WIM platforms, were stopped to be 
weighed statically. Axle, Group of Axles and Gross Vehicle loads of these vehicle were 
measured utilizing a specially designed static truck scale. So we create invaluable datasets ,
which in turn, made the 
types and road surface quality.

Keywords: weigh-in-motion, data analysis, deep learning technique, direct enforcement.

Résumé
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1. Introduction

Transportation and Road Ministry of Iran is currently implementing a network of WIM systems 
deployed throughout the whole country consisting of more than 150 WIM systems. The main 
reason of using WIM systems is to measure gross, axle, and axle-group weights of trucks to 
improve road maintenance, infrastructure design, and load limit enforcement. To accomplish this, 
a national project started to install more than 150 WIM systems in main roads all over the country. 

One challenge in WIM system is data analysis method. To date, different approaches have been 
applied to increase weigh estimation accuracy. For example, (Zhi-feng et. al, 2015) presented 
particle swarm optimization method to separate the dynamic tire forces contained in axle-weight 
signal. In order to improve precision of the WIM system data for direct enforcement, there is an 
urgent need for data analysis methods that can analyze massive data from weighing sensors
automatically and provide axles, group of axles and gross vehicle weights accurately. Artificial 
intelligence techniques, such as artificial neural networks (ANNs), could be used for weight 
estimation and vehicle classification as well. A neural network approach was developed in (Wang 
& Flood, 2015) for WIM system. Through the literature review, it was noticed that ANNs are one 

Gonzalez 
et. al, (2003) reported that applying ANNs outperformed the traditional average-based calibration 
methods especially with noisy data. ANN-based approaches have been applied for dynamic 
weighing systems since 1998 by Bahar & Horrocks, (1998) and in many other researches 
(Baladrón, et. al, 2012, Lin et. al, 2015, Ru, et. al, 2010). The ANN-based approaches reported in 
literature for dynamic weighing systems have three
into neural system are extracted and selected from the measured signals of load sensors (such as
load cells), largely depend on shape of the signal and the sampling rate of data acquisition system. 
(2) The features are selected according to velocity of vehicle passing WIM system. Characteristics 
of the signal are completely dependent on vehicle velocity. Thus it is necessary to adaptively mine 
the characteristics hidden in the measured signals to extract appropriate features out of the data.
(3) The ANNs commonly developed in intelligent WIM systems have shallow simple 
architectures, which means having only one hidden layer in an ANN architecture; e.g. (Jiang, et. 
al, 2012, Lin et. al, 2015). Such simple architectures of ANN may not be able to model 
nonlinearities of WIM data. Deep learning (DL) technique holds the potential to overcome the 
aforementio the dynamic weighing systems. DL refers to a class of machine 
learning methods, where many layers of information processing stages in deep architectures are 
used (Jia, et. al, 2016). Deep neural networks (DNNs) 
is applied for sensor signal processing in WIM system. This paper proposes a novel data analysis 
method to overcome the above-mentioned -based techniques used in WIM 
systems. In this method, DNNs are utilized to extract features from weighing sensor (load cell) 
data and estimate static axle weight. First, unsupervised layer-by-layer learning is used to pre-train 
data and modify features. Then a supervised learning algorithm is applied to construct the best 
model for the WIM system. The advantages of the proposed method are summarized as follows. 
(1) It is able to extract adaptively dominant features from raw data without any dependency to the 
vehicle velocity. (2) The technique is capable of constructing the nonlinear relationships in the 
data. So, the proposed algorithm is expected to estimate axle load regardless of vehicle speed, 
vehicle suspension types and WIM site road roughness. Compared with available methods the 
proposed approach, is expected to obtain higher axle weight estimation accuracy to establish 
intelligent WIM (IWIM) system eligible for direct enforcement.
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2. Deep learning

DL constructs a high dimensional function via sequences of training to model nonlinear 
transformations among data. The deep architectures are very large neural networks that can handle 
huge amounts of data. These large NNs are trained with more and more data to increase their 
performance. This is generally different to other machine learning techniques that reach a plateau 
in performance. Deep learning allows for efficient modeling of nonlinear functions. The advantage 
of deep hidden layers is for a high dimensional input variable, x = (x1, . . . , xp ). DNN is able to 
identify any underlying trends such as those due to spatial repeatability and to consider them in its 
estimation of labeled value. The Kolmogorov-Arnold representation theorem provides the 
theoretical motivation for deep learning (Polson, et. al, 2017). The theorem states that any 
continuous function of n variables, defined by F (x), can be represented as

))(()(
12

1 1

n

j

n

i
iijj xhgxF (1)

Where ig and ijh are continuous functions, and ijh is a universal basis, that does not depend on 

F. For a NN, it means that any function of n variables can be represented as a neural network with 
one hidden layer and 2n + 1 activation functions. 

3. HS-WIM structure

An overview of different sections of the proposed HS-WIM system is shown in Figure 1. The basic 
structure of the HS-WIM system is composed of four main modules: (1) mechanical components, 
(2) electrical components, (3) software components and (4) vision components. These four 
modules are further defined as follows:

Mechanical module: This grouping includes the set of technologies, structures and sensors that 
receive vehicle axle weight data while passing the system. This section includes load receptors, 
weighing steel structure, weighing platforms and load cell sensors. The Load cells used in HS-
WIM system have maximum error of ±0.02% for static weighing and are class C3 OIML certified. 
The mechanical module is statically calibrated with dead weights in the factory before installation. 

Electrical module: this grouping contains the set of receiving axle load data, converting and 
digitizing data and pre-filtering components. This module composed of A/D converters, decimate 
board, pre-filter board, and data logger. All instruments of this section is calibrated in the 
laboratory before installation and all parts are absolutely interchangeable.

Vehicle identification module: this grouping encompasses motion detection, optical character 
recognition (OCR), and automatic number plate recognition (ANPR) technologies. The 
components in this part are such as front view camera, side view camera, IR light, white light and 
image analysis software.
Software programming module: this grouping provides data analyzing for axle load estimation, 
library, dataset creation, vehicle detection and vehicle identification techniques. Expanded 
overview of the proposed HS-WIM system architecture is depicted in Figure 2. The arrows 
connecting each of the components in Figure 2 illustrate the specific information interfaces for the 
modules in the architecture. The screening computer integrates data from the modules in the 
system to screen and identify target vehicles at the road. The data from the overloaded vehicles 
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and Data Center elements are sent to enforcement center. This information will be used to directly 
apply enforcement activities on the targeted vehicles.

Figure 1 - Four main modules of HS-WIM system

Mechanical Structure

Load cell sensors

Weighing Platform

OCR

Communication 
System

PC

Vehicle Identification

Electrical Parts

Pre-filtering

A/D converter Board

Software Programming

Axle load estimation

Axle detection

Vehicle Speed estimation

Vehicle Detection

Vehicle weight estimation

Vehicle classification
Vehicle Identification

Output

Figure 2 - Expanded hierarchical architecture of HS-WIM system

4. Deep Learning technique for WIM system

Raw data from load cells are received at 63K.Sample/sec rate. This signal may include some 
random noise as well as vehicle axle weight. One sample data from weighing platforms are shown 
in Figure 3. The amplitudes and frequencies of dynamic tire forces vary with vehicle speed, load 
of vehicle, the position of tire load, vehicle suspension type, tire tread type, road roughness, road 
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inclination and so on. It is illustrated that load cell vibration due to dynamic axle impact needs 
some time to settle down until actual weight signal become stable. We need to estimate static axle 
load from load cell transient response in HS-WIM system. Since the width (in the direction of 
traffic flow) of scale platform is 98 cm, so the quicker the vehicles pass the shorter the sampling 
time and the shorter signal we have. DNNs are trained in three main procedures: (1) Clustering 
raw data into different clusters according to features characteristics. (2) Pre-training the DNNs 
layer by layer with unsupervised method called autoencoders. (3) Training DNNs with back 
propagation (BP) algorithm to minimize square relative error.

5. Clustering

The goal of clustering is identifying classes that all data points into each class have more 
similarities than data points in other collections. Clustering is the study of algorithm and methods 
for grouping
data from other collections are not alike (Jain, & Dubes, 1988). This study applied T-Distributed 
Stochastic Neighbor Embedding (T-SNE) for dimension reduction of data. T-SNE is a nonlinear 
dimensionality reduction algorithm used for exploring high-dimensional data. It transforms multi-
dimensional data to two or more dimensions suitable for human observation. T-SNE technique 
was applied on Load cell signals; some clusters of features extracted from load cell signal are 
depicted in Figure 4. One sample result of dimensionality reduction on load cell signal is shown 
in Figure 5. After application of hierarchical clustering on signal, the clusters are in seven groups 
depicted in Figure 6. Geometrical characteristics of load cell data were used for clustering; for 
example, peaks and valleys amplitude ratio and frequency of data are parameters used for 
clustering. Then data in each cluster are used to train a DNN system separately.

Figure 3 - Sample data from weighing platforms

6. Autoencoder for load cell signal

After clustering signals and identifying alike groups, each collection is sent to Autoencoder (AE) 
for subject modeling. Features extracted in each cluster are used as input to an AE. An AE is a 
DNN that has the same dimensions for input and output and all layers are fully connected. In the 
training phase, the AE is trained by using the same load cell signal as input and also output. An 
AE can generate highly similar output for trained data, whereas it does not for unfamiliar data. 
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Therefore, different test sets are used for validation and cross-validation processes. Figure 7
illustrates the proposed method for AE which is a seven-layer AE with one input layer, five hidden 
layers, and one output layer. Output of each layer is used as an input to the next layer. The training 
steps continue until the sixth layer autoencoder is trained and the output layer provides the 
organized features for the load cell signal. In the proposed AE, the pre-training via encoder and 
decoders helps DNNs learn multiple nonlinear relationships among extracted features. Then the 

-tuning process helps the DNNs estimate static axle weights from load cell signals. 

Figure 4 some clusters of features extracted from load cell signal

Figure 5 T-SNE on load cell signal Figure 6 clustering load cell signal

7. DNN construction for HS-WIM system

In a HS-WIM system, the relationship of speed, platform vibration, pavement roughness, 

So, it is difficult to identify a function and specific mathematical expressions to represent static 
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weight analytically. Therefore, in this study a DNN algorithm was proposed to predict the 
nonlinear relationships among those.

Figure 7 Auto encoder architecture used for unsupervised learning of load cell signal

8. Data description

The training sets of labeled data (known reference static axle loads) were prepared from HS-WIM 
system installed in Ardestan in two lanes. More than 50000 random vehicles of 2-, 3-, 4-, 5-, and 
6-axle trucks were weighted statically using reference instruments. Weighing instruments used to 
determine the static reference vehicle axle loads are OIML R76 certified. Therefore, reference 
static axle loads are all measured with less than ±1% error. So, we had a dataset of more than 
300,000 axle weights with known referenced value. We used 70% of this data set for training of 
DNNs and 20% of data for test set and 10% for cross-validation of proposed DNN. Some of sample 
tests and reference axle weights are depicted in Table 1. Platform data (load cell signal) for all 
vehicles passing WIM system are recorded in text files. These files are analyzed off-line for 
training of DNN. 

Table 1 sample of referenced vehicle tests using static reference scale

Static Weight (kg)

Date and time
Speed
(km/h)

Lane
Vehicle 

class
Group 
Axle1

Group 
Axle2

Group 
Axle3

Total Weight

20170814-125442 62 1 12 7200 12650 21890 41740
20170814-125449 57 1 13 5800 15600 20670 42070
20170814-125652 91 2 12 6780 12050 21550 40380
20170814-125709 78 1 13 6380 16070 20960 43410
20170814-125710 75 2 12 6910 11290 22430 40630
20170814-125829 74 2 7 7070 19920 0 26990
20170814-125838 70 3 12 7060 9950 22510 39520
20170814-125847 44 1 13 4350 14420 14900 33670
20170814-125853 52 1 13 6190 15310 14160 35660

9. Training of DNN

By using HS-WIM systems, the amount of each axle load, the total gross vehicle weight, and also 
the Equivalent Single Axle Load (ESAL) for each vehicle are estimated very accurately. Load cell 
signals for all 300,000 static axle weights are recorded then are pre-processed for feature 
extraction. After that data are sent to AE. Output from AE are sent to DNNs for training. Training 
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process are repeated many times until the least square relative error is attained. The network is 
composed of five layers 23 nodes in input layer and 20 nodes in hidden layers and one node in 
output layer. Tangent hyperbolic function (tansig) was used in hidden layers and purelin function 
in output layer. In the proposed DNNs, Levenberg-Marquardt (lm) algorithm were used for 
training. Because the mean square error in lm algorithm decreases much more rapidly with time 
than other algorithms. Sometime training time would take half a day to be completed because of 
the big data sets we have. Each trained net is also tested on test sets and validation sets. Finally, 
the net with the least relative error (the highest accuracy) on train set, test set and validation set is 
chosen. Training results are depicted in Figure 8.

Figure 8 - regression results

10. Performance of DNN on HS-WIM and results

10.1 HS-WIM layout
Figure 9 shows layouts of the proposed HS-WIM systems and automatic number plate recognition 
system. This figure illustrates that there are two platforms installed next to each other with 7 cm 
space in each line; platform A1, platform B1 for fast lane (line 1) and platform A2, platform B2 
for slow lane (line 2).

10.2 Field test results 
Initial experiments with varying network depths showed that deep nets work better than shallow 
ones. Therefore, among different architectures of deep nets a DNN with 9 layers and tansig 
activation function has the highest accuracy in axle weight estimation. We trained two main 
collections: (1) high-speed load cell signals. (2) normal-speed load cell signals (shown in Figure 
10). In high-speed cases, number of extracted features are less than normal-speed ones. But speed 
is not considered as an input to the DNN. The proposed technique was applied on 300,000 data of 
different random trucks from the traffic flow. All this data is from Ardestan HS-WIM site. Some 
of the test results are shown in Table 2. This table shows static reference weights, dynamic 
estimated weights and percentage of error between them. Performance of the trained DNN was 
calculated as mean square error (mse) on each data set. For the best results on the test and validation 
sets mse was 2.26 E7, 3.15 E7 respectively. This technique is working almost one year in Ardestan 
WIM site. Periodic tests are performed for this WIM system and all of the test results are within L 
(5) accuracy class and consequently eligible for direct enforcement. The suggested DNN technique 

133



is applied on other HS-WIM sites such as Delijan, Esfehan, Naeen and many other sites in the 
country. The proposed DNN technique would be fine-tuned for new WIM-installation sites using 
200 test data. Thus, this approach is independent from road roughness and pavement conditions. 
The proposed WIM system is capable of recognizing driver behaviors such as rapid accelerating 
or decelerating. Using two platforms with 98 cm width (in direction of the traffic flow) made it 
possible to have complete tire contact-patch and tire load distribution. So, amount of damage 
caused by vehicle axle loads (ESAL) could be accurately calculated in this system. The results 
show that using two platforms in each lane increases accuracy of the axle weighing dramatically. 
It compensates for vehicle suspension vibrations and road unevenness as well. It seems that DNN 
is capable of managing big data efficiently from several load sensors. The suggested DNN is able 
to identify any underlying trends such as those due to spatial repeatability and to consider them in 
its estimate of static axle weight. The offered HS-WIM system is complied with OIML R134.

Figure 9 - HS-WIM system layouts

Figure 10 - some of typical load cell signals received from HS-WIM system that are inputs to AE 
and DNN

11. Conclusion

This research presents a deep neural network technique for dynamic vehicle weighing. The 
-WIM sites in 

different places in Iran highways. These datasets contain more than 300,000 axles with known 
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referenced weights. All these static weights are measured using control weighing instruments 
(static truck scales) which are certified according to OIML R76. Reference vehicles are various 
trucks randomly chosen from the traffic flow. All this labeled data is used for unsupervised and 
supervised learning processes. The results of these datasets shown that the proposed method is 
able to weigh axle loads of different trucks with L(5) accuracy. Every mechanical and electrical 
parts of HS-WIM system are interchangeable and the proposed DNN approach is able to identify 
any underlying trends and nonlinear relationships among characteristics of the system. Thus, the 
proposed method is the least dependent on road roughness and pavement conditions and L(5) 
accuracy class is obtainable with installing this WIM system anywhere other than current 
positions. The offered HS-WIM system is complied with OIML R134. In the proposed method, 
DNNs are trained using Levenberg-Marquardt (lm) algorithm. Because the mean square error in 
lm algorithm decreases much more rapidly with time than other algorithms. 

Table 2 some results from performance of the proposed DNN on HS-WIM: comparison of 
estimated axle weights and static weights are shown as relative error (% of error)

S
peed 

(K
m

/h)

V
ehicl

e class

Static Weight (kg) Weight in Motion (kg) % of error
GAX1 GAX2 GAX3 Total 

weight
GAX1 GAX2 GAX3 Total 

weight
GAX1 GAX2 GAX3 Total 

weight

68 13 5680 8680 9650 24010 5591 8514 9799 23904 -1.57 -1.91 1.54 -0.44
83 4 5660 9980 0 15640 5573 10640 0 16213 -1.54 6.61 0.00 3.66
78 13 5820 11720 11940 29480 5976 12360 12264 30600 2.68 5.46 2.71 3.80
75 4 5180 6420 0 11600 5322 6294 0 11616 2.74 -1.96 0.00 0.14
70 13 6370 18650 13360 38380 5935 20018 13197 39150 -6.83 7.34 -1.22 2.01
63 12 6370 12070 20510 38950 6263 11706 21110 39079 -1.68 -3.02 2.93 0.33
54 13 6620 17260 20240 44120 6342 17333 20325 44000 -4.20 0.42 0.42 -0.27
69 13 6540 14780 15690 37010 6593 14601 16755 37949 0.81 -1.21 6.79 2.54
72 7 6470 21960 0 28430 6890 21796 0 28686 6.49 -0.75 0.00 0.90
61 4 6380 13230 0 19610 6694 13394 0 20088 4.92 1.24 0.00 2.44
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